Characteristics of Sauces Incorporated with Various Percentages of Salted Duck Egg Yolk

Julia Ulfah 1, Deni Novia 2*, Aronal Arief Putra 1

1Department of Technology of Animal Products, Faculty of Animal Science, Universitas Andalas, Kampus Limau Manih, 25643, West Sumatra, Indonesia
2Corresponding Author: dnovia@ansci.unand.ac.id

Received : 15 Mei 2023
Accepted : 18 Agustus 2023
Published : 28 Agustus 2023
Online : 31 Agustus 2023

Abstract: Salted duck egg is a popular traditional egg product among limited egg products found in many Asian countries. Incorporation of salted egg yolk in sauce formulation to develop salted egg-based sauce was conducted. Randomized Block Design was used as research design. This study is divided into five treatments (20, 40, 60, 80, and 100% of salted egg yolk to the ratio of milk used). Moisture, pH, color (L*, a*, b*), and sensory intensity (color and texture) were evaluated. The result of this present study showed that incorporation salted duck egg affect moisture, pH, instrumental color (L*, a*, b*), and color and texture intensities more significantly (P<0.05). Moisture and lightness (L*) of samples were decreased by higher percentage of salted yolk egg used (P<0.05). In contrast, pH, redness, yellowness, color intensity, and texture intensity were increased (P<0.05). To sum up, incorporation of salted egg yolk in sauce could be applied to provide varied optional sauce type for consumers.

Keywords: duck egg, salted egg, sauce, physicochemical, sensory properties
all, salted duck egg could be consumed alone or combined with rice during breakfast or lunch.

In commercial products, the using of salted egg as ingredient/component in other food products could be found in Chinese foods in form of cakes and pastries. It could be found in products such as mooncakes [4, 5, 6], zongzi [4, 5], egg puffs [4] particularly for its yolk. However, incorporation of salted egg in other food products, either in form of salted egg yolk or salted egg white, in previous researches were reported. Application of raw egg white in noodles [7, 8], raw salted egg white in meringues [9], steamed salted egg white in sufu [10], and salted egg yolk in mayonnaise [11, 12] were some of such reports.

Sauce is important thickened liquid produced by cooking that usually added to the food to increase food liking. It is used during cooking or added after final cooked products produced. The latter usually applied to smear nuggets, sausages, burger, fried chicken, or sometimes added to meatballs noodle soup, bakmi, fried noodle, fried rice, etc.

In Indonesia, sauces mostly found in form of tomato and chili sauces; while some others might be found in limited quantity in form of oyster sauce, etc. However, sauce could also be developed from cooked salted egg yolk to create typical salted yolk flavor. Its ground particles might still be able to mix with other common sauce components rather than salted egg white. In fact, incorporation salted egg yolk to the sauce formulation might affected sauce characteristics. Thus, related sauce attributes particularly moisture, pH, color, and some sensory intensities need to be evaluated.

2. Material and methods

2.1. Material

Fresh duck eggs were brought from a wet market in Padang. Ingredients to produce salted eggs (coarse salt, husk ash, water) and sauces (UHT full cream milk, margarine, fine salt, white pepper powder) were also prepared.

2.2. Methods

2.2.1 Salted egg yolk production sauce formulation and its cooking

Salted eggs were prepared conventionally for 2 week salting period with coating method using coarse salt-husk ash paste. Salted yolks were collected after half hour cooked using boiled method. Sauce production was conducted as adapted from a guideline [13] with modification, particularly in salted egg yolk percentage as could be seen in Table 1. The production is started by put 8 grams of margarine into a heated pan. Subsequently ground salted egg yolk were added (as fitted with treatment) and mixed until no lump observed. Then, 100 grams of UHT full cream milk were added and mix well.

<table>
<thead>
<tr>
<th>Ingredient (gr)</th>
<th>Treatment</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margarine</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Salted egg yolk</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>UHT full cream milk</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>White pepper powder</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Salt</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

After that, 1 gram of white pepper powder and 1 gram of salt were also sprinkled. The mixture was stirred to form final thickened liquid.

2.2.2 Laboratory analysis

Moisture analysis was determined using oven method [14]. pH was measured by mixing sample and distilled water in ratio 1:2 prior to analyzed using a pH meter. Instrumental color (L∗a∗b∗) was performed using a hunter lab colorimeter (Color Flex EZ, USA). Color intensity (1= white; 7= reddish orange) and texture intensity (1= very watery; 7= very thick) were developed using 7-point scale and evaluated by 50 panelists [15].

2.2.3 Statistical analysis

This study was carried out using Randomized Block Design (RBD). Statistical data were determined using SPSS. Data were subjected to ANOVA, and significant difference was established at 0.05.

3. Result and discussion

Moisture content of sauce treated with various percentages of salted egg yolk is presented in Figure 1.

Above figure epitomized a decreasing percentage in moisture by higher percentage of salted egg yolk incorporated in sauce formulation (P<0.05). This related to the moisture content of egg yolk itself (34.32%). This means that about two-third of salted egg yolk composition composed of total solid. Thus,
this higher total solid decreased the moisture content of sauce that dominated by liquid full cream milk that had lower total solid.

Moreover, moisture of salted egg yolk used for formulated the sauces was in range of other report. A reference [16] found that 14 days salted egg yolk contain 20.05-36.21% of moisture (interior to exterior). Those lower than that of fresh egg yolk (43.51%). The increase in water content in the 100% treatment compared to 80% with the addition of salted egg yolk was caused by the isoelectric point being reached. At the isoelectric point at pH 7.10, hydration is smallest so the water content decreases [17].

pH of sauce treated with various percentages of salted egg yolk could be seen in Figure 2. Increasing pH by higher salted egg yolk incorporated in sauce formulation was noticed (<0.05).

As the main component, UHT milk also contributed to the pH of samples. pH of UHT milk normally in ranged of 6.5-6.61 [18]. While others affected by pHs of margarine, white pepper, and salt. Since pH of salted egg yolk used was 7.1, increased of pH of sauces with various percentages of salted egg to about pH 7 was noticed. Moreover, pH of salted egg itself recorded in this research is equal to pH in other report [19] but from 18 days salting period.

![Figure 2. pH of sauce treated with various percentages of salted egg yolk.](image)

Figure 2. pH of sauce treated with various percentages of salted egg yolk

![Figure 3. Lightness (L*), redness (a*), and yellowness (b*) of sauce treated with various percentages of salted egg yolk.](image)

Figure 3. Lightness (L*), redness (a*), and yellowness (b*) of sauce treated with various percentages of salted egg yolk
Instrumental color (L^*, a^*, b^*) of sauce treated with various percentages of salted egg yolk is provided in Figure 3. Data showed decreasing result in lightness (L^*) by higher incorporation of salted egg yolk in formulation ($P<0.05$). In contrast, redness (a^*) and yellowness (b^*) were decreased ($P<0.05$).

As highlighted in a previous research [20], some factors might cause the form of salted egg yolk color. Those are egg yolk dehydration, pigment released from the yolk, as well as lipid and protein oxidations during egg salting process. In this present study, color of the only salted egg yolk were 68.93 (lightness), 18.64 (redness), and 55.14 (yellowness). Accordingly, the basic color from the salted egg contributed to increasing of redness and yellowness, and decreasing of lightness of the sauces.

Color and texture intensities of sauce treated with various percentages of salted egg yolk are shown in Figure 4. Color intensity is significantly increased by incorporation of salted egg yolk ($P<0.05$). The intensity is ranged from pale yellow (control) to deep yellow (treatment E).

Carotenoids are natural pigments in egg responsible for the color of raw egg yolk and still existed in salted egg yolk. In general, this pigment is associated with yellow, orange, or reddish color. Previous report [21] noted that the main carotenoids found in egg are lutein and zeaxanthin. In 14 days salting period, salted duck egg yolk contain 1280 and 801 μg/100 g egg yolk of lutein and zeaxanthin, respectively.

Thus, basic pigments in salted egg yolk contributed to color intensity of sauces in which color of milk and margarine as the based pigments. Higher percentage of salted egg yolk used resulting more intense yellow color formed.

As in the earlier explained, salted egg yolk might composed of about two-third of total solid. The higher percentage of salted egg yolk added to the formulation, the viscosity of sauces was gradually elevates.

Egg yolk is significant for its emulsion ability and gel formation as heat induced [23]. In general, salting increase viscosity of duck egg up to 3-5 times [23]. Thus, after being changes into solidified form due to boiling and continues used into sauces formulation, the viscous sauced treated with salted egg yolk is formed.

4. Conclusion

Incorporation of salted egg yolk in sauces formulation decreased moisture, and lightness; but increase pH, redness (a^*), yellowness (b^*), color intensity, and texture intensity ($P,0.05$). Panelist prefer color intensity and texture intensity parallel on percentage of salted duck egg yolk. Further studies are required to find suitable percentage for consumer preferences.

References

and microstructures of duck eggs. s. PLoS ONE 12 (8), e0182912.

